Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Machine learning for automated abdominal aortic calcification scoring of DXA vertebral fracture assessment images: A pilot study.

Bone 2021 July
BACKGROUND: Abdominal aortic calcification (AAC) identified on dual-energy x-ray absorptiometry (DXA) vertebral fracture assessment (VFA) lateral spine images is predictive of cardiovascular outcomes, but is time-consuming to perform manually. Whether this procedure can be automated using convolutional neural networks (CNNs), a class of machine learning algorithms used for image processing, has not been widely investigated.

METHODS: Using the Province of Manitoba Bone Density Program DXA database, we selected a random sample of 1100 VFA images from individuals qualifying for VFA as part of their osteoporosis assessment. For each scan, AAC was manually scored using the 24-point semi-quantitative scale and categorized as low (score < 2), moderate (score 2 to <6), or high (score ≥ 6). An ensemble consisting of two CNNs was developed, by training and evaluating separately on single-energy and dual-energy images. AAC prediction was performed using the mean AAC score of the two models.

RESULTS: Mean (SD) age of the cohort was 75.5 (6.7) years, 95.5% were female. Training (N = 770, 70%), validation (N = 110, 10%) and test sets (N = 220, 20%) were well-balanced with respect to baseline characteristics and AAC scores. For the test set, the Pearson correlation between the CNN-predicted and human-labelled scores was 0.93 with intraclass correlation coefficient for absolute agreement 0.91 (95% CI 0.89-0.93). Kappa for AAC category agreement (prevalence- and bias-adjusted, ordinal scale) was 0.71 (95% CI 0.65-0.78). There was complete separation of the low and high categories, without any low AAC score scans predicted to be high and vice versa.

CONCLUSIONS: CNNs are capable of detecting AAC in VFA images, with high correlation between the human and predicted scores. These preliminary results suggest CNNs are a promising method for automatically detecting and quantifying AAC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app