Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Increased MMP-9 levels with strain-dependent stress resilience and tunnel handling in mice.

Increased perineuronal net (PNN) deposition has been observed in association with corticosteroid administration and stress in rodent models of depression. PNNs are a specialized form of extracellular matrix (ECM) that may enhance GABA-mediated inhibitory neurotransmission to potentially restrict the excitation and plasticity of pyramidal glutamatergic neurons. In contrast, antidepressant administration increases levels of the PNN-degrading enzyme matrix metalloproteinase-9 (MMP-9), which enhances glutamatergic plasticity and neurotransmission. In the present study, we compare pro-MMP-9 levels and measures of stress in females from two mouse strains, C57BL/6 J and BALB/cJ, in the presence or absence of tail grasping versus tunnel-associated cage transfers. Prior work suggests that C57BL/6 J mice show relatively enhanced neuroplasticity and stress resilience, while BALB/c mice demonstrate enhanced susceptibility to adverse effects of stress. Herein we observe that as compared to the C57BL/6 J strain, BALB/c mice demonstrate a higher level of baseline anxiety as determined by elevated plus maze (EPM) testing. Moreover, as determined by open field testing, anxiety is differentially reduced in BALB/c mice by a choice-driven tunnel-entry cage transfer technique. Additionally, as compared to tail-handled C57BL/6 J mice, tail-handled BALB/c mice have reduced brain levels of pro-MMP-9 and increased levels of its endogenous inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1); however, tunnel-associated cage transfer increases pro-MMP-9 levels in BALB/c mice. BALB/c mice also show increases in Western blot immunoreactive bands for brevican, a constituent of PNNs. Together, these data support the possibility that MMP-9, an effector of PNN remodeling, contributes to the phenotype of strain and handling-associated differences in behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app