Add like
Add dislike
Add to saved papers

Classification and analysis of outcome predictors in non-critically ill COVID-19 patients.

BACKGROUND: Early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients who could develop a severe form of COVID-19 must be considered of great importance to carry out adequate care and optimise the use of limited resources.

AIMS: To use several machine learning classification models to analyse a series of non-critically ill COVID-19 patients admitted to a general medicine ward to verify if any clinical variables recorded could predict the clinical outcome.

METHODS: We retrospectively analysed non-critically ill patients with COVID-19 admitted to the general ward of the hospital in Pordenone from 1 March 2020 to 30 April 2020. Patients' characteristics were compared based on clinical outcomes. Through several machine learning classification models, some predictors for clinical outcome were detected.

RESULTS: In the considered period, we analysed 176 consecutive patients admitted: 119 (67.6%) were discharged, 35 (19.9%) dead and 22 (12.5%) were transferred to intensive care unit. The most accurate models were a random forest model (M2) and a conditional inference tree model (M5) (accuracy = 0.79; 95% confidence interval 0.64-0.90, for both). For M2, glomerular filtration rate and creatinine were the most accurate predictors for the outcome, followed by age and fraction-inspired oxygen. For M5, serum sodium, body temperature and arterial pressure of oxygen and inspiratory fraction of oxygen ratio were the most reliable predictors.

CONCLUSIONS: In non-critically ill COVID-19 patients admitted to a medical ward, glomerular filtration rate, creatinine and serum sodium were promising predictors for the clinical outcome. Some factors not determined by COVID-19, such as age or dementia, influence clinical outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app