Add like
Add dislike
Add to saved papers

Epstein-Barr virus induces adipocyte dedifferentiation to modulate the tumor microenvironment.

Cancer Research 2021 April 7
The most frequent location of metastatic EBV+ nasopharyngeal carcinoma (NPC) is the bone marrow, an adipocyte-dominant region. Several EBV-associated lymphoepithelioma-like carcinoma (LELC) types also grow in the anatomical vicinity of fat tissues. Here we show that in an adipose tissue-rich tumor setting, EBV targets adipocytes and remodels the tumor microenvironment. Positive immunoreactivity for EBV-encoded early antigen D was detected in adipose tissue near tumor beds of bone marrow metastatic NPC. EBV was capable of infecting primary human adipocytes in vitro, triggering expression of multiple EBV-encoded mRNA and proteins. In infected adipocytes, lipolysis was stimulated through enhanced expression of lipases and the AMPK metabolic pathway. The EBV-mediated imbalance in energy homeostasis was further confirmed by increased release of free fatty acids, glycerol, and expression of pro-inflammatory adipokines. Clinically, enhanced serum levels of free fatty acids in NPC patients correlated with poorer recurrence-free survival. EBV-induced delipidation stimulated dedifferentiation of adipocytes into fibroblast-like cells expressing higher levels of S100A4, a marker protein of cancer-associated fibroblasts (CAF). Immunohistochemical analyses of bone marrow metastatic NPC and salivary LELC revealed similar structural changes of dedifferentiated adipocytes located at the boundaries of EBV+ tumors. S100A4 expression in adipose tissues near tumor beds correlated with fibrotic response, implying that CAFs in the tumor microenvironment are partially derived from EBV-induced dedifferentiated adipocytes. Our data suggest that adipose tissue serves as an EBV reservoir, where EBV orchestrates the interactions between adipose tissues and tumor cells by rearranging metabolic pathways to benefit virus persistence and promote a pro-tumorigenic microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app