Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Unravelling the Neural Basis of Spatial Delusions After Stroke.

OBJECTIVE: Knowing explicitly where we are is an interpretation of our spatial representations. Reduplicative paramnesia is a disrupting syndrome in which patients present a firm belief of spatial mislocation. Here, we studied the largest sample of patients with delusional misidentifications of space (ie, reduplicative paramnesia) after stroke to shed light on their neurobiology.

METHODS: In a prospective, cumulative, case-control study, we screened 400 patients with acute right-hemispheric stroke. We included 64 cases and 233 controls. First, lesions were delimited and normalized. Then, we computed structural and functional disconnection maps using methods of lesion-track and network-mapping. The maps were compared, controlling for confounders. Second, we built a multivariate logistic model, including clinical, behavioral, and neuroimaging data. Finally, we performed a nested cross-validation of the model with a support-vector machine analysis.

RESULTS: The most frequent misidentification subtype was confabulatory mislocation (56%), followed by place reduplication (19%), and chimeric assimilation (13%). Our results indicate that structural disconnection is the strongest predictor of the syndrome and included 2 distinct streams, connecting right fronto-thalamic and right occipitotemporal structures. In the multivariate model, the independent predictors of reduplicative paramnesia were the structural disconnection map, lesion sparing of right dorsal fronto-parietal regions, age, and anosognosia. Good discrimination accuracy was demonstrated (area under the curve = 0.80 [0.75-0.85]).

INTERPRETATION: Our results localize the anatomic circuits that may have a role in the abnormal spatial-emotional binding and in the defective updating of spatial representations underlying reduplicative paramnesia. This novel data may contribute to better understand the pathophysiology of delusional syndromes after stroke. ANN NEUROL 2021;89:1181-1194.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app