JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

SARS-CoV-2 Entry Related Viral and Host Genetic Variations: Implications on COVID-19 Severity, Immune Escape, and Infectivity.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to display particular patterns of genetic diversity in the genome across geographical regions. These variations in the virus and genetic variation in human populations can determine virus transmissibility and coronavirus disease 2019 (COVID-19) severity. Genetic variations and immune differences in human populations could be the driving forces in viral evolution. Recently emerged SARS-CoV-2 variants show several mutations at the receptor binding domain in the spike (S) glycoprotein and contribute to immune escape and enhanced binding with angiotensin 1-converting enzyme 2 (ACE2). Since ACE2 and transmembrane protease serine 2 (TMPRSS2) play important roles in SARS-CoV-2 entry into the cell, genetic variation in these host entry-related proteins may be a driving force for positive selection in the SARS-CoV-2 S glycoprotein. Dendritic or liver/lymph cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin is also known to play vital roles in several pathogens. Genetic variations of these host proteins may affect the susceptibility to SARS-CoV-2. This review summarizes the latest research to describe the impacts of genetic variation in the viral S glycoprotein and critical host proteins and aims to provide better insights for understanding transmission and pathogenesis and more broadly for developing vaccine/antiviral drugs and precision medicine strategies, especially for high risk populations with genetic risk variants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app