Add like
Add dislike
Add to saved papers

Algorithm to minimize MPI communications in the parallelized fast multipole method combined with molecular dynamics calculations.

In the era of exascale supercomputers, large-scale, and long-time molecular dynamics (MD) calculations are expected to make breakthroughs in various fields of science and technology. Here, we propose a new algorithm to improve the parallelization performance of message passing interface (MPI)-communication in the MPI-parallelized fast multipole method (FMM) combined with MD calculations under three-dimensional periodic boundary conditions. Our approach enables a drastic reduction in the amount of communication data, including the atomic coordinates and multipole coefficients, both of which are required to calculate the electrostatic interaction by using the FMM. In communications of multipole coefficients, the reduction rate of communication data in the new algorithm relative to the amount of data in the conventional one increases as both the number of FMM levels and the number of MPI processes increase. The aforementioned rate increase could exceed 50% as the number of MPI processes becomes larger for very large systems. The proposed algorithm, named the minimum-transferred data (MTD) method, should enable large-scale and long-time MD calculations to be calculated efficiently, under the condition of massive MPI-parallelization on exascale supercomputers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app