Add like
Add dislike
Add to saved papers

Markers of tissue remodeling and inflammation in the white and brown adipose tissues of a model hibernator.

Cellular Signalling 2021 March 10
The thirteen-lined ground squirrel is a model fat-storing hibernator that nearly doubles its weight in the fall to fuel metabolism with triglycerides throughout the winter months. Hibernator brown and white adipose tissue (BAT, WAT) are important to study in terms of their inflammatory profile and tissue remodeling mechanisms since controlled and natural regulation of these processes could inform new pharmacological interventions that limit oxidative stress and inflammation in the adipose tissues of humans suffering from obesity, promote non-shivering thermogenesis-mediated weight loss, or prevent tissue damage in transplantable organs emerging from cold-storage. Thus, markers of inflammation like cytokines and soluble receptors and tissue remodeling proteins such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) were investigated in normothermic, torpid, and arousing ground squirrels. Multiplex protein assays and western blotting revealed fewer changes in WAT compared to BAT. Pro-inflammatory IL-1α levels increased during torpor and soluble epidermal growth factor receptor protein levels increased during arousal in BAT. Given their known roles in other model systems, these proteins could regulate processes like adipogenesis, lipid catabolism, or cell motility. Decreased TIMP2 levels combined with maintained MMP2 or MMP3 protein levels suggested that BAT may avoid tissue remodeling until arousal. No changes in WAT inflammatory cytokines or soluble receptors as well as decreased MMP2 levels during torpor and arousal suggested inflammation and modification to the extracellular matrix is likely suppressed in WAT. This study emphasizes the fat-but-fit nature of the hibernating ground squirrel and the ability of its fat stores to suppress inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app