JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Drug-activated cells: From immediate early genes to neuronal ensembles in addiction.

Beyond their rapid rewarding effects, drugs of abuse can durably alter an individual's response to their environment as illustrated by the compulsive drug seeking and risk of relapse triggered by drug-associated stimuli. The persistence of these associations even long after cessation of drug use demonstrates the enduring mark left by drugs on brain reward circuits. However, within these circuits, neuronal populations are differently affected by drug exposure and growing evidence indicates that relatively small subsets of neurons might be involved in the encoding and expression of drug-mediated associations. The identification of sparse neuronal populations recruited in response to drug exposure has benefited greatly from the study of immediate early genes (IEGs) whose induction is critical in initiating plasticity programs in recently activated neurons. In particular, the development of technologies to manipulate IEG-expressing cells has been fundamental to implicate broadly distributed neuronal ensembles coincidently activated by either drugs or drug-associated stimuli and to then causally establish their involvement in drug responses. In this review, we summarize the literature regarding IEG regulation in different learning paradigms and addiction models to highlight their role as a marker of activity and plasticity. As the exploration of neuronal ensembles in addiction improves our understanding of drug-associated memory encoding, it also raises several questions regarding the cellular and molecular characteristics of these discrete neuronal populations as they become incorporated in drug-associated neuronal ensembles. We review recent efforts towards this goal and discuss how they will offer a more comprehensive understanding of addiction pathophysiology.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app