Add like
Add dislike
Add to saved papers

AP2-microRNA-26a overexpression reduces visceral fat mass and blood lipids.

BACKGROUND: MicroRNA-26a (miR-26a) is a key player in tumor suppression and plays important roles in glucose and lipid metabolism. However, its function in adipose tissue is not well defined.

OBJECTIVE: The study aimed to examine the effect on fat expansion and function of miR-26a in adipose tissue.

METHODS: Adipose-specific miR-26a transgenic mice (Ap2-miR-26a) were firstly generated by breeding miR-26a floxed (Mir26a loxP /loxP ) mice with Ap2-Cre recombinase transgenic mice. The effects of miR-26a adipose-specific overexpression on body weight, body fat composition, fat pad weight, adipocyte size, blood lipid levels, glucose metabolism, and adipogenesis were investigated in mice on a chow diet and a high fat diet. White adipose tissue browning was evaluated by energy expenditure, adipocyte morphology and browning related genes expression levels both at room temperature and after cold exposure. Gene expression was determined by Real-Time quantitative PCR and western blotting.

RESULTS: MiR-26a was specifically overexpressed in adipose by ∼4 folds. Ap2-miR-26a mice had a moderate decrease in body weight, body fat composition, epididymal white adipose (eWAT) weight and blood lipid levels, along with smaller adipocytes in eWAT. The favorable phenotype was not due to white adipose tissue browning (even after cold exposure) or adipogenesis or lipolysis. Ap2-miR-26a mice exhibited no significant metabolic phenotype under high-fat-diet feeding.

CONCLUSION: This study suggests that adipose-specific overexpression of miR-26a could moderately reduce visceral fat pad mass and lipid levels independent of white adipose tissue browning, adipogenesis and adipose lipolysis based on the gene expression level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app