Add like
Add dislike
Add to saved papers

Purification, structural characterization, and PCSK9 secretion inhibitory effect of the novel alkali-extracted polysaccharide from Cordyceps militaris.

One novel alkali-extracted polysaccharide, CM3-SII, was obtained from the fruiting body of C. militaris via column chromatography. Its structural characteristics were investigated via chemical and spectroscopic methods. The backbone of CM3-SII was composed of →4)-β-D-Manp(1→, →6)-β-D-Manp(1→, and →6)-α-D-Manp(1→ glycosyls, and branching at the O-4 positions of →6)-β-D-Manp(1→ glycosyls with β-D-Galp, (1→2) linked-β-D-Galf, and →2,6)-α-D-Manp(1→ residues. Furthermore, O-6 and O-2 positions of the →2,6)-α-D-Manp(1→ residues were substituted with methyl and β-D-Galp, respectively. This polysaccharide significantly enhanced the intracellular protein expression of low-density lipoprotein receptor and proprotein convertase subtilisin/kexin type 9 (PCSK9) via regulating sterol regulatory element-binding protein 2 in hepatoma Huh7 cells. Of note, CM3-SII significantly decreased PCSK9 secretion at the concentration of 200 μg/mL. Collectively, CM3-SII is different from the previously reported alkali-extracted polysaccharides isolated from the fruiting body of C. militaris, and it may have potential application in hypolipidemia or as a pharmaceutical additive.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app