Add like
Add dislike
Add to saved papers

Paradoxical sensory reactivity induced by functional disconnection in a robot model of neurodevelopmental disorder.

Neurodevelopmental disorders are characterized by heterogeneous and non-specific nature of their clinical symptoms. In particular, hyper- and hypo-reactivity to sensory stimuli are diagnostic features of autism spectrum disorder and are reported across many neurodevelopmental disorders. However, computational mechanisms underlying the unusual paradoxical behaviors remain unclear. In this study, using a robot controlled by a hierarchical recurrent neural network model with predictive processing and learning mechanism, we simulated how functional disconnection altered the learning process and subsequent behavioral reactivity to environmental change. The results show that, through the learning process, long-range functional disconnection between distinct network levels could simultaneously lower the precision of sensory information and higher-level prediction. The alteration caused a robot to exhibit sensory-dominated and sensory-ignoring behaviors ascribed to sensory hyper- and hypo-reactivity, respectively. As long-range functional disconnection became more severe, a frequency shift from hyporeactivity to hyperreactivity was observed, paralleling an early sign of autism spectrum disorder. Furthermore, local functional disconnection at the level of sensory processing similarly induced hyporeactivity due to low sensory precision. These findings suggest a computational explanation for paradoxical sensory behaviors in neurodevelopmental disorders, such as coexisting hyper- and hypo-reactivity to sensory stimulus. A neurorobotics approach may be useful for bridging various levels of understanding in neurodevelopmental disorders and providing insights into mechanisms underlying complex clinical symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app