Add like
Add dislike
Add to saved papers

Endoplasmic reticulum stress and autophagy are involved in adipocyte-induced fibrosis in hepatic stellate cells.

Liver fibrosis, with the characterization of progressive accumulation of extracellular matrix (ECM), is the common pathologic feature in the process of chronic liver disease. Hepatic stellate cells (HSCs) which are activated and differentiate into proliferative and contractile myofibroblasts are recognized as the main drivers of fibrosis. Obesity-related adipocytokine dysregulation is known to accelerate liver fibrosis progression, but the direct fibrogenic effect of mature adipocytes on HSCs has been rarely reported. Therefore, the purpose of this study was to explore the fibrogenic effect of adipocyte 3T3-L1 cells on hepatic stellate LX-2 cells. The results showed that incubating LX-2 cells with the supernatant of 3T3-L1 adipocytes triggered the expression of ECM related proteins, such as α-smooth muscle actin (α-SMA), type I collagen (CO-I), and activated TGF β/Smad2/3 signaling pathway in LX-2 cells. In addition, 3T3-L1 cells inhibited insulin sensitivity, activated endoplasmic reticulum stress and autophagy to promote the development of fibrosis. These results supported the notion that mature adipocytes can directly activate hepatic stellate cells, and the establishment of an in vitro model of adipocytes on HSCs provides an insight into screening of drugs for liver diseases, such as nonalcoholic fatty liver disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app