Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibiting microRNA-155 attenuates atrial fibrillation by targeting CACNA1C.

BACKGROUND: Reduction in L-type Ca2+ current (ICa,L ) density is a hallmark of the electrical remodeling in atrial fibrillation (AF). The expression of miR-155, whose predicted target gene is the α1c subunit of the calcium channel (CACNA1C), was upregulated in atrial cardiomyocytes (aCMs) from patients with paroxysmal AF.The study is to determine miR-155 could target the gene expression of ICa,L and contribute to electrical remodeling in AF.

METHODS: The expression of miR-155 and CACNA1C was assessed in aCMs from patients with paroxysmal AF and healthy control. ICa,L properties were observed after miR-155 transfection in human induced pluripotent stem cell derived atrial cardiomyocytes (hiPSC-aCMs). Furthermore, an miR-155 transgene (Tg) and knock-out (KO) mouse model was generated to determine whether miR-155 was involved in ICa,L -related electrical remodeling in AF by targeting CACNA1C.

RESULTS: The expression level of miR-155 was increased, while the expression level of CACNA1C reduced in the aCMs of patients with AF. miR-155 transfection in hiPSC-aCMs produced changes in ICa,L properties qualitatively similar to those produced by AF. miR-155/Tg mice developed a shortened action potential duration and increased vulnerability to AF, which was associated with decreased ICa,L and attenuated by an miR-155 inhibitor. Finally, the genetic inhibition of miR-155 prevented AF induction in miR-155/KO mice with no changes in ICa,L properties.

CONCLUSIONS: The increased miR-155 expression in aCMs was sufficient for the reduction in the density of ICa,L and the underlying electronic remodeling. The inhibition of miR-155 prevented ICa,L -related electric remodeling in AF and might constitute a novel anti-AF approach targeting electrical remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app