Add like
Add dislike
Add to saved papers

Backward bifurcation in within-host HIV models.

Mathematical Biosciences 2021 Februrary 24
The activation and proliferation of naive CD4 T cells produce helper T cells, and increase the susceptible population in the presence of HIV. This may cause backward bifurcation. To verify this, we construct a simple within-host HIV model that includes the key variables, namely healthy naive CD4 T cells, helper T cells, infected CD4 T cells and virus. When the viral basic reproduction number R0 is less than unity, we show theoretically and numerically that bistability for RC <R0 <1 can be caused by a backward bifurcation due to a new susceptible population produced by activation of healthy naive CD4 T cells that become helper T cells. An extended model including the CTL dynamics may also show this backward bifurcation. In the case that the homeostatic source of healthy naive CD4 T cells is large, RC is approximately the threshold for HIV to persist independent of initial conditions. The backward bifurcation may still occur even when we consider latent infections of naive CD4 T cells. Thus to control the spread of within-host HIV, it may be necessary for treatment to reduce the reproduction number below RC .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app