Add like
Add dislike
Add to saved papers

Intranasal Orexin After Cardiac Arrest Leads to Increased Electroencephalographic Gamma Activity and Enhanced Neurologic Recovery in Rats.

Objectives: Prolonged cardiac arrest is known to cause global ischemic brain injury and functional impairment. Upon resuscitation, electroencephalographic recordings of brain activity begin to resume and can potentially be used to monitor neurologic recovery. We have previously shown that intrathecal orexin shows promise as a restorative drug and arousal agent in rodents. Our goal is to determine the electrophysiology effects of orexin in a rodent model of asphyxial cardiac arrest, focusing on the electroencephalographic activity in the gamma and super-gamma bands (indicative of return of higher brain function).

Design: Experimental animal study.

Setting: University-based animal research laboratory.

Subjects: Adult male Wistar rats.

Interventions: In an established model of asphyxial cardiac arrest ( n = 24), we treated half of Wistar rats with orexin administered intranasally by atomizer 30 minutes post return of spontaneous circulation in one of two dose levels (10 and 50 µM); the rest were treated with saline as control. Continuous electroencephalographic recording was obtained and quantitatively analyzed for the gamma fraction. Gamma and high-frequency super-gamma band measures were compared against clinical recovery according to Neuro-Deficit Score.

Measurements and Main Results: Compared with the control cohort, the high-dose orexin cohort showed significantly better Neuro-Deficit Score 4 hours after return of spontaneous circulation (55.17 vs 47.58; p < 0.02) and significantly higher mean gamma fraction (0.251 vs 0.177; p < 0.02) in cerebral regions surveyed by rostral electrodes for the first 170 minutes after administration of orexin.

Conclusions: Our findings support early and continuous monitoring of electroencephalography-based gamma activity as a marker of better functional recovery after intranasal administration of orexin as measured by Neuro-Deficit Score in an established animal model of asphyxial cardiac arrest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app