Add like
Add dislike
Add to saved papers

Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy.

Nanoscale 2021 Februrary 23
In combating cancer, ultrasound (US)-triggered sonodynamic therapy (SDT) manifests a wide range of promising applications as a noninvasive treatment modality, thus showing potential to overcome the shortcomings and disadvantages of conventional photodynamic therapy (PDT). Reactive oxygen species (ROS)-based therapy is practically destroyed by the high concentration of glutathione (GSH) inside tumors, and depleting GSH to improve the outcome of SDT is indeed a great challenge. Herein, we designed GSH-depleting nanoplatelets for enhanced sonodynamic cancer therapy. A platelet membrane coated nanosystem (PSCI) has been designed and tested comprising mesoporous silica nanoparticles (MSNs) which have been loaded with cinnamaldehyde (CA) as an oxidative stress amplifier. The inner layer comprises the sonosensitizer IR780 and the oxidative stress amplifier CA, whereas the platelet membranes (PM) were designed and utilized as an outer layer that can target tumors, thereby enhancing the effectiveness of SDT by attenuating the capability of tumor cells for scavenging ROS with GSH. SDT and cinnamaldehyde amplify oxidative stress by acting synergistically, leading to the preferential destruction of cancer cells in vitro and in vivo. It is hoped that next-generation tumor SDT treatments will find their way with the help of this strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app