Add like
Add dislike
Add to saved papers

Trophoblast uptake of DBP regulates intracellular actin and promotes matrix invasion.

Journal of Endocrinology 2021 Februrary 2
Early pregnancy is characterised by elevated circulating levels of vitamin D binding protein (DBP). The impact of this on maternal and fetal health is unclear but DBP is present in the placenta, and DBP gene variants have been linked to malplacentation disorders such as preeclampsia. A functional role for DBP in the placenta was investigated using trophoblastic JEG3, BeWo and HTR8 cells. All three cells lines showed intracellular DBP, with increased expression and nuclear localisation of DBP in cells treated with the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D). When cultured in serum from mice lacking DBP (DBP-/-), JEG3 cells showed no intracellular DBP indicating uptake of exogenous DBP. Inhibition of the membrane receptor for DBP, megalin, also suppressed intracellular DBP. Elimination of intracellular DBP with DBP-/- serum or megalin inhibitor suppressed matrix invasion by trophoblast cells, and was associated with increased nuclear accumulation of G-actin. Conversely, treatment with 1,25D enhanced matrix invasion. This was independent of the nuclear vitamin D receptor but was associated with enhanced ERK phosphorylation, and inhibition of ERK kinase suppressed trophoblast matrix invasion. When cultured with serum from pregnant women, trophoblast matrix invasion correlated with DBP concentration, and DBP was lower in first trimester serum from women who later developed preeclampsia. These data show that trophoblast matrix invasion involves uptake of serum DBP and associated intracellular actin binding and homeostasis. DBP is a potential marker of placentation disorders such as preeclampsia and may also provide a therapeutic option for improved placenta and pregnancy health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app