Add like
Add dislike
Add to saved papers

ECG Language processing (ELP): A new technique to analyze ECG signals.

BACKGROUND: A language is constructed of a finite/infinite set of sentences composing of words. Similar to natural languages, the Electrocardiogram (ECG) signal, the most common noninvasive tool to study the functionality of the heart and diagnose several abnormal arrhythmias, is made up of sequences of three or four distinct waves, including the P-wave, QRS complex, T-wave, and U-wave. An ECG signal may contain several different varieties of each wave (e.g., the QRS complex can have various appearances). For this reason, the ECG signal is a sequence of heartbeats similar to sentences in natural languages) and each heartbeat is composed of a set of waves (similar to words in a sentence) of different morphologies.

METHODS: Analogous to natural language processing (NLP), which is used to help computers understand and interpret the human's natural language, it is possible to develop methods inspired by NLP to aid computers to gain a deeper understanding of Electrocardiogram signals. In this work, our goal is to propose a novel ECG analysis technique, ECG language processing (ELP), focusing on empowering computers to understand ECG signals in a way physicians do.

RESULTS: We evaluated the proposed approach on two tasks, including the classification of heartbeats and the detection of atrial fibrillation in the ECG signals. Overall, our technique resulted in better performance or comparable performance with smaller neural networks compared to other deep neural networks and existing algorithms.

CONCLUSION: Experimental results on three databases (i.e., PhysioNet's MIT-BIH, MIT-BIH AFIB, and PhysioNet Challenge 2017 AFIB Dataset databases) reveal that the proposed approach as a general idea can be applied to a variety of biomedical applications and can achieve remarkable performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app