Secretory Leukocyte Protease Inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer

Sandrine Nugteren, Janneke N Samsom
Cytokine & Growth Factor Reviews 2021 February 10
The immune system is continuously challenged with large quantities of exogenous antigens at the barriers between the external environment and internal human tissues. Antimicrobial activity is essential at these sites, though the immune responses must be tightly regulated to prevent tissue destruction by inflammation. Secretory Leukocyte Protease Inhibitor (SLPI) is an evolutionarily conserved, pleiotropic protein expressed at mucosal surfaces, mainly by epithelial cells. SLPI inhibits proteases, exerts antimicrobial activity and inhibits nuclear factor-kappa B (NF-κB)-mediated inflammatory gene transcription. SLPI maintains homeostasis at barrier tissues by preventing tissue destruction and regulating the threshold of inflammatory immune responses, while protecting the host from infection. However, excessive expression of SLPI in cancer cells may have detrimental consequences, as recent studies demonstrate that overexpression of SLPI increases the metastatic potential of epithelial tumors. Here, we review the varied functions of SLPI in the respiratory tract, skin, gastrointestinal tract and genitourinary tract, and then discuss the mechanisms by which SLPI may contribute to cancer.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"