Journal Article
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Extracorporeal Cardiopulmonary Resuscitation for Refractory Out-of-Hospital Cardiac Arrest (EROCA): Results of a Randomized Feasibility Trial of Expedited Out-of-Hospital Transport.

STUDY OBJECTIVE: Outcomes of extracorporeal cardiopulmonary resuscitation (ECPR) for out-of-hospital cardiac arrest depend on time to therapy initiation. We hypothesize that it would be feasible to select refractory out-of-hospital cardiac arrest patients for expedited transport based on real-time estimates of the 911 call to the emergency department (ED) arrival interval, and for emergency physicians to rapidly initiate ECPR in eligible patients.

METHODS: In a 2-tiered emergency medical service with an ECPR-capable primary destination hospital, adults with refractory shockable or witnessed out-of-hospital cardiac arrest were randomized 4:1 to expedited transport or standard care if the predicted 911 call to ED arrival interval was less than or equal to 30 minutes. The primary outcomes were the proportion of subjects with 911 call to ED arrival less than or equal to 30 minutes and ED arrival to ECPR flow less than or equal to 30 minutes.

RESULTS: Of 151 out-of-hospital cardiac arrest 911 calls, 15 subjects (10%) were enrolled. Five of 12 subjects randomized to expedited transport had an ED arrival time of less than or equal to 30 minutes (overall mean 32.5 minutes [SD 7.1]), and 5 were eligible for and treated with ECPR. Three of 5 ECPR-treated subjects had flow initiated in less than or equal to 30 minutes of ED arrival (overall mean 32.4 minutes [SD 10.9]). No subject in either group survived with a good neurologic outcome.

CONCLUSION: The Extracorporeal Cardiopulmonary Resuscitation for Refractory Out-of-Hospital Cardiac Arrest trial did not meet predefined feasibility outcomes for selecting out-of-hospital cardiac arrest patients for expedited transport and initiating ECPR in the ED. Additional research is needed to improve the accuracy of predicting the 911 call to ED arrival interval, optimize patient selection, and reduce the ED arrival to ECPR flow interval.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app