Add like
Add dislike
Add to saved papers

β-1, 3-galactosyltransferase 2 deficiency exacerbates brain injury after transient focal cerebral ischemia in mice.

Brain Research Bulletin 2021 January 20
Glycosyltransferases are enzymes that catalyze the formation of a variety of glycoconjugates. Glycoconjugates play vital roles in the nervous system. β-1, 3-Galactosyltransferase 2 (B3galt2) is one of the major types of glycosyltransferases, which has not been reported in ischemia induced-brain injury. The purpose of this study was to explore the role of B3galt2 exerts and its underlying mechanism in cerebral ischemia in mice. Wild-type (WT) and heterozygous B3galt2 knockout (B3galt2-/+ ) mice were subjected to 90 min transient focal cerebral ischemia by middle cerebral artery occlusion (MCAO). The brain samples were analyzed at 24 h after reperfusion. The B3galt2 level in the peri-infarct penumbra was quantified. The cerebral infarct volume, neurological deficits, apoptosis and the levels of Reelin and Dab1 were assessed. Compared with control mice, B3galt2-/+ mice not only showed severe brain damage, neurologic functional deficits, but also showed severe neuronal apoptosis in the cortical penumbra after ischemia/reperfusion (I/R). The Caspase-3 activity was increased and the levels of Reelin and Dab1 were decreased in B3galt2-/+ mice. Recombinant human Reelin (rh-Reelin) administered intracerebroventricularly before MCAO significantly reduced infarct volume, and prevented neuronal loss in B3galt2-/+ mice after I/R. Our results suggest B3galt2 deficiency exacerbates ischemic brain damage in acute ischemic stroke in mice, and this was reversed by giving rh-Reelin. B3galt2 might play a beneficial role for neurons survival in the penumbra through modulation of Reelin pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app