Alteration of TRIM33 Expression at Transcriptional and Translational Levels is Correlated with Autism Symptoms

Sattar Norouzi Ofogh, Homa Rasoolijazi, Esmaeil Shahsavand Ananloo, Zahra Shahrivar, Mohammad Taghi Joghataei, Bahman Sadeghi, Ali Bozorgmehr, Fatemeh Alizadeh
Journal of Molecular Neuroscience: MN 2021 January 22
As a complex neurodevelopmental disorder, autism affects children in three major cognitive domains including social interactions, language learning and repetitive stereotyped behaviors. Abnormal regulation of cell proliferation in the brain during the embryonic period via the TGF-β signaling pathway and TRIM33 gene that encodes a protein with a corepressor and regulatory role in this pathway has been considered as an etiology for autism. Here, we investigated the association of a variation of TRIM33 with autism symptoms at levels of mRNA and protein expression. We used Autism Diagnostic Interview-Revised (ADI-R) and Childhood Autism Rating Scale (CARS) as behavioral diagnostic tools. Normal and autistic children were genotyped for a TRIM33 polymorphism (rs11102807), and then expression was assessed at transcriptional and translational levels. Results demonstrated that the frequency of the homozygous A allele (AA genotype of rs11102807) was significantly higher in children with autism (P < 0.001), whereas carriers of the G allele were mostly among healthy individuals. Children homozygous for the rs11102807 A allele were associated with an increase in CARS and ADI-R scores, indicating a significant correlation with autism symptoms. TRIM33 gene expression at both mRNA (P < 0.01) and protein (P < 0.001) levels was significantly higher in controls compared to autistic children. A remarkable association between higher TRIM33 gene expression at the transcriptional level and lower scores for both CARS and ADI-R was observed in non-autistic children. It seems that rs11102807 modulates the function and expression of the TRIM33 gene, implying that the A allele may increase the risk of autism in children by reducing gene expression and altering the TGF-β signaling pathway.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"