Add like
Add dislike
Add to saved papers

Characterization and Activation of Fas Ligand-Producing Mouse B Cells and Their Killer Exosomes.

B lymphocytes make several contributions to immune regulation including production of antibodies with regulatory properties, release of immune suppressive cytokines, and expression of death-inducing ligands. A role for Fas ligand (FasL)-expressing "killer" B cells in regulating T helper (TH ) cell survival and chronic inflammation has been demonstrated in animal models of schistosome worm and other infections, asthma, autoimmune arthritis, and type 1 diabetes. FasL+ B cells were also capable of inducing immune tolerance in a male-to-female transplantation model. Interestingly, populations of B cells found in the spleen and lungs of naïve mice constitutively expresses FasL and have potent killer function against TH cells that is antigen-specific and FasL-dependent. Epstein-Barr virus-transformed human B cells constitutively express FasL and package it into exosomes that co-express MHC Class II molecules and have killer function against antigen-specific TH cells. FasL+ exosomes with markers of B-cell lineage are abundant in the spleen of naïve mice. Killer B cells therefore represent a novel target for immune modulation in many disease settings. Our laboratory has published methods of characterizing FasL+ B cells and inducing their proliferation in vitro. This updated chapter will describe methods of identifying and expanding killer B cells from mice, detecting FasL expression in B cells, extracting FasL+ exosomes from spleen and culture supernatants, and performing functional killing assays against antigen-specific TH cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app