Biomolecular condensation of NUP98 fusion proteins drives leukemogenic gene expression
Stefan Terlecki-Zaniewicz, Theresa Humer, Thomas Eder, Johannes Schmoellerl, Elizabeth Heyes, Gabriele Manhart, Natalie Kuchynka, Katja Parapatics, Fabio G Liberante, André C Müller, Eleni M Tomazou, Florian Grebien
Nature Structural & Molecular Biology 2021 January 21
33479542
NUP98 fusion proteins cause leukemia via unknown molecular mechanisms. All NUP98 fusion proteins share an intrinsically disordered region (IDR) in the NUP98 N terminus, featuring repeats of phenylalanine-glycine (FG), and C-terminal fusion partners often function in gene control. We investigated whether mechanisms of oncogenic transformation by NUP98 fusion proteins are hardwired in their protein interactomes. Affinity purification coupled to mass spectrometry (MS) and confocal imaging of five NUP98 fusion proteins expressed in human leukemia cells revealed that shared interactors were enriched for proteins involved in biomolecular condensation and that they colocalized with NUP98 fusion proteins in nuclear puncta. We developed biotinylated isoxazole-mediated condensome MS (biCon-MS) to show that NUP98 fusion proteins alter the global composition of biomolecular condensates. An artificial FG-repeat-containing fusion protein phenocopied the nuclear localization patterns of NUP98 fusion proteins and their capability to drive oncogenic gene expression programs. Thus, we propose that IDR-containing fusion proteins combine biomolecular condensation with transcriptional control to induce cancer.
Full Text Links
Find Full Text Links for this Article
You are not logged in. Sign Up or Log In to join the discussion.