Add like
Add dislike
Add to saved papers

Expansion microscopy of the mitotic spindle.

The mitotic spindle is a dynamic and complex cellular structure made of microtubules and associated proteins. Although the general localization of most proteins has been identified, the arrangement of the microtubules in the mitotic spindle and precise localization of various proteins are still under intensive research. However, techniques used previously to decipher such puzzles are resolution limited or require complex microscopy systems. On the other hand, expansion microscopy is a novel super-resolution microscopy technique that uses physical expansion of fixed specimens to allow features closer than the diffraction limit of light (~250nm) to become resolvable in the expanded specimen on a conventional confocal microscope. This chapter focuses on expansion microscopy of the mitotic spindle, specifically using tubulin labeling to visualize all microtubule subpopulations within the spindle. Furthermore, we discuss a protocol for expansion of GFP-tagged proteins, such as protein regulator of cytokinesis 1 (PRC1). We also discuss various approaches for image analysis pointing out main advantages of expansion microscopy when compared to previously used techniques. This approach is currently used in our laboratory to study the architecture of the microtubules in the mitotic spindle after perturbations of various proteins important for the structural and dynamical properties of the mitotic spindle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app