Add like
Add dislike
Add to saved papers

Effect of memantine on Pentylenetetrazol-induced seizures and EEG profile in animal model of cortical malformation.

Neuroscience 2021 January 17
Developmental cortical malformations (DCM) are one of the main causes of refractory epilepsy. Many are the mechanisms underlying the hyperexcitability in DCM, including the important contribution of N-methyl-D-aspartate receptors (NMDAR). NMDAR blockers are shown to abolish seizures and epileptiform activity. Memantine, a NMDAR antagonist used to treat Alzheimeŕs disease, has been recently investigated as a possible treatment for other neurological disorders. However, the effects on preventing or diminishing seizures are controversial. Here we aimed to evaluate the effects of memantine on pentylenetetrazole (PTZ)-induced seizures in the freeze-lesion (FL) model. Bilateral cortical microgyria were induced (FL) or not (Sham) in male Wistar neonate rats. At P30, subdural electrodes were implanted and 7 days later, video-EEG was recorded in animals receiving either memantine (FL-M or Sham-M) or saline (FL-S or Sham-S), followed by PTZ. Seizures were evaluated by video-EEG during one hour and scored according to Racine scale. The video-EEG analyses revealed that the number of seizures and the total duration of stage IV-V seizures developed during the 1h-period increased after memantine application in all groups. The EEG power spectral density (PSD) analysis showed an increased PSD of pre-ictal delta in Sham-M animals and increased PSD of slow, middle and fast gamma oscillations after memantine injection that persists during the pre-ictal period in all groups. Our findings suggested that memantine was unable to control the PTZ-induced seizures and that the associated enhancement of PSD of gamma oscillations may contribute to the increased probability of seizure development in these animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app