JOURNAL ARTICLE
OBSERVATIONAL STUDY
Add like
Add dislike
Add to saved papers

Machine learning methods to improve bedside fluid responsiveness prediction in severe sepsis or septic shock: an observational study.

BACKGROUND: Passive leg raising (PLR) predicts fluid responsiveness in critical illness, although restrictions in mobilising patients often preclude this haemodynamic challenge being used. We investigated whether machine learning applied on transthoracic echocardiography (TTE) data might be used as a tool for predicting fluid responsiveness in critically ill patients.

METHODS: We studied, 100 critically ill patients (mean age: 62 yr [standard deviation: 14]) with severe sepsis or septic shock prospectively over 24 months. Transthoracic echocardiography measurements were performed at baseline, after PLR, and before and after a standardised fluid challenge in learning and test populations (n=50 patients each). A 15% increase in stroke volume defined fluid responsiveness. The machine learning methods used were classification and regression tree (CART), partial least-squares regression (PLS), neural network (NNET), and linear discriminant analysis (LDA). Each method was applied offline to determine whether fluid responsiveness may be predicted from left and right cardiac ventricular physiological changes detected by cardiac ultrasound. Predictive values for fluid responsiveness were compared by receiver operating characteristics (area under the curve [AUC]; mean [95% confidence intervals]).

RESULTS: In the learning sample, the AUC values were PLR 0.76 (0.62-0.89), CART 0.83 (0.73-0.94), PLS 0.97 (0.93-1), NNET 0.93 (0.85-1), and LDA 0.90 (0.81-0.98). In the test sample, the AUC values were PLR 0.77 (0.64-0.91), CART 0.68 (0.54-0.81), PLS 0.83 (0.71-0.96), NNET 0.83 (0.71-0.94), and LDA 0.85 (0.74-0.96) respectively. The PLS model identified inferior vena cava collapsibility, velocity-time integral, S-wave, E/Ea ratio, and E-wave as key echocardiographic parameters.

CONCLUSIONS: Machine learning generated several models for predicting fluid responsiveness that were comparable with the haemodynamic response to PLR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app