Add like
Add dislike
Add to saved papers

Decellularized biologic muscle-fascia abdominal wall scaffold graft.

Surgery 2021 March
BACKGROUND: Complex abdominal wall reconstruction using biologic mesh can lead to increased recurrence rates, nonincorporation, and high perioperative costs. We developed a novel decellularization method and applied it to porcine muscle fascia to mirror target-tissue architecture. The aims of this study were to analyze mechanical strength and tissue-graft incorporation.

METHODS: After serial decellularization, muscle-fascia mesh was created and tested for mechanical strength and DNA content. The muscle-fascia mesh was implanted subcutaneously in rats (n = 4/group) and the cohorts killed 1 to 4 weeks later. Explants were examined histologically or immunohistochemically.

RESULTS: Mechanical testing demonstrated equivalent strength compared with a commercially available biological mesh (AlloDerm), with mechanical strength attributable to the fascia component. Grafts were successfully implanted with no observable adverse events. Gross necroscopy revealed excellent subdermal scaffold engraftment. Microscopic evaluation identified progressive collagen deposition within the graft, neoangiogenesis, and presence of CD34 positive cells, in the absence of discernable graft rejection.

CONCLUSION: This study confirms a decellularization process can successfully create a DNA-free composite abdominal wall (muscle-fascia) scaffold that can be implanted intraspecies without rejection. Expanding this approach may allow exploitation of the angiogenic capacities of decellularized muscle, concomitant with the inherent strength of decellularized fascia, to perform preclinical analyses of graft strength in animal models in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app