Add like
Add dislike
Add to saved papers

Stochastic stem cell models with mutation: A comparison of asymmetric and symmetric divisions.

Mathematical Biosciences 2021 January 14
In order to fulfill cell proliferation and differentiation through cellular hierarchy, stem cells can undergo either asymmetric or symmetric divisions. Recent studies pay special attention to the effect of different modes of stem cell division on the lifetime risk of cancer, and report that symmetric division is more beneficial to delay the onset of cancer. The fate uncertainty of symmetric division is considered to be the reason for the cancer-delaying effect. In this paper we compare asymmetric and symmetric divisions of stem cells via studying stochastic stem cell models with mutation. Specially, by using rigorous mathematical analysis we find that both the asymmetric and symmetric models show the same statistical average, but the symmetric model shows higher fluctuation than the asymmetric model. We further show that the difference between the two models would be more remarkable for lower mutation rates. Our work quantifies the uncertainty of cell division and highlights the significance of stochasticity for distinguishing between different modes of stem cell division.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app