Add like
Add dislike
Add to saved papers

Prepubertal exposure to a high dose of cadmium induces hypothalamic injury through transcriptome profiling alteration and neuronal degeneration in female rats.

Cadmium (Cd) is a toxic metal, which seems to be crucial during the prepubertal period. Cd can destroy the structural integrity of the blood-brain barrier (BBB) and enters into the brain. Although the brain is susceptible to neurotoxicity induced by Cd, the effects of Cd on the brain, particularly hypothalamic transcriptome, are still relatively poorly understood. Therefore, we investigated the molecular effects of Cd exposure on the hypothalamus by profiling the transcriptomic response of the hypothalamus to high dose of Cd (25 mg/kg bw/day cadmium chloride (CdCl2 )) during the prepubertal period in Sprague-Dawley female rats. After sequencing and annotation, differential expression analysis revealed 1656 genes that were differentially expressed that 108 of them were classified into 37 transcription factor (TF) families. According to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, these differentially expressed genes (DEGs) were involved in different biological processes and neurological disorders including Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), prolactin signaling pathway, PI3K/Akt signaling, and dopaminergic synapse. Five transcripts were selected for further analyses with Real-time quantitative PCR (RT-qPCR). The RT-qPCR results were mostly consistent with those from the high throughput RNA sequencing (RNA-seq). Cresyl violet staining clearly showed an increased neuronal degeneration in the dorsomedial hypothalamus (DMH) and arcuate (Arc) nuclei of the CdCl2 group. Overall, this study demonstrates that prepubertal exposure to high doses of Cd induces hypothalamic injury through transcriptome profiling alteration in female rats, which reveals the new mechanisms of pathogenesis of Cd in the hypothalamus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app