Add like
Add dislike
Add to saved papers

Molecular cloning and transcriptional regulation of two γ-carbonic anhydrase genes in the green macroalga Ulva prolifera.

Genetica 2021 January 16
Ulva prolifera O.F. Müller (Ulvophyceae, Chlorophyta) is well known as a typical green-tide forming macroalga which has caused the world's largest macroalgal blooms in the Yellow Sea of China. In this study, two full-length γ-carbonic anhydrase (γ-CA) genes (UpγCA1 and UpγCA2) were cloned from U. prolifera. UpγCA1 has three conserved histidine residues, which act as an active site for binding a zinc metal ion. In UpγCA2, two of the three histidine residues were replaced by serine and arginine, respectively. The two γ-CA genes are clustered together with other γ-CAs in Chlorophyta with strong support value (100% bootstrap) in maximum likelihood (ML) phylogenetic tree. Quantitative real-time PCR (qRT-PCR) analysis showed that stressful environmental conditions markedly inhibited transcription levels of these two γ-CA genes. Low pH value (pH 7.5) significantly increased transcription level of UpγCA2 not UpγCA1 at 12 h, whereas high pH value (pH 8.5) significantly inhibited the transcription of these two γ-CA genes at 6 h. These findings enhanced our understanding on transcriptional regulation of γ-CA genes in response to environmental factors in U. prolifera.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app