Add like
Add dislike
Add to saved papers

Inhibition of aerobic glycolysis alleviates sepsis‑induced acute kidney injury by promoting lactate/Sirtuin 3/AMPK‑regulated autophagy.

Metabolism reprogramming influences the severity of organ dysfunction, progression to fibrosis, and development of disease in acute kidney injury (AKI). Previously we showed that inhibition of aerobic glycolysis improved survival rates and protected septic mice from kidney injury. However, the underlying mechanisms remain unclear. In the present study, it was revealed that sepsis or lipopolysaccharide (LPS) enhanced aerobic glycolysis as evidenced by increased lactate production and upregulated mRNA expression of glycolysis‑related genes in kidney tissues and human renal tubular epithelial (HK‑2) cells. The aerobic glycolysis inhibitor 2‑deoxy‑D‑glucose (2‑DG) downregulated glycolysis, and improved kidney injury induced by sepsis. 2‑DG treatments increased the expression of sirtuin 3 (SIRT3) and phosphorylation‑AMP‑activated protein kinase (p‑AMPK), following promoted autophagy and attenuated apoptosis of tubular epithelial cells in septic mice and in LPS‑treated HK‑2 cells. However, the glycolysis metabolite lactate downregulated SIRT3 and p‑AMPK expression, inhibited autophagy and enhanced apoptosis in LPS‑treated HK‑2 cells. Furthermore, pharmacological blockade of autophagy with 3‑methyladenine (3‑MA) partially abolished the protective effect of 2‑DG in sepsis‑induced AKI. These findings indicated that inhibition of aerobic glycolysis protected against sepsis‑induced AKI by promoting autophagy via the lactate/SIRT3/AMPK pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app