Add like
Add dislike
Add to saved papers

Disrupting the DREAM transcriptional repressor complex induces apolipoprotein overexpression and systemic amyloidosis in mice.

DREAM is a transcriptional repressor complex that regulates cell proliferation and its loss causes neonatal lethality in mice. To investigate DREAM function in adult mice, we utilized an assembly defective p107 protein and conditional deletion of its redundant family member p130. In the absence of DREAM assembly, mice displayed shortened survival characterized by systemic amyloidosis, but no evidence of excessive cellular proliferation. Amyloid deposits were found in the heart, liver, spleen, and kidneys, but not the brain or bone marrow. Using laser capture microdissection followed by mass spectrometry, we identified apolipoproteins as the most abundant components of amyloids. Intriguingly, apoA-IV was the most detected amyloidogenic protein in amyloid deposits, suggesting AApoAIV amyloidosis. AApoAIV is a recently described form whereby wildtype apoA-IV has been shown to predominate in amyloid plaques. We determined that DREAM directly regulates Apoa4 by chromatin immunoprecipitation and that the histone variant H2AZ is reduced from the Apoa4 gene body in DREAM's absence, leading to overexpression. Collectively, we describe a mechanism by which epigenetic misregulation causes apolipoprotein overexpression and amyloidosis, potentially explaining the origins of non-genetic amyloid subtypes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app