Add like
Add dislike
Add to saved papers

DNA-Tetrahedral-Nanostructure-Based Entropy-Driven Amplifier for High-Performance Photoelectrochemical Biosensing.

ACS Nano 2021 January 14
In virtue of the inherent molecular recognition and programmability, DNA has recently become the most promising for high-performance biosensors. The rationally engineered nucleic acid architecture will be very advantageous to hybridization efficiency, specificity, and sensitivity. Herein, a robust and split-mode photoelectrochemical (PEC) biosensor for miRNA-196a was developed based on an entropy-driven tetrahedral DNA (EDTD) amplifier coupled with superparamagnetic nanostructures. The DNA tetrahedron structure features in rigidity and structural stability that contribute to obtain precise identification units and specific orientations, improving the hybridization efficiency, sensitivity, and selectivity of the as-designed PEC biosensor. Further, superparamagnetic Fe3 O4 @SiO2 @CdS particles integrated with DNA nanostructures are beneficial for the construction of a split-mode, highly selective, and reliable PEC biosensor. Particularly, the enzyme- and hairpin-free EDTD amplifier eliminates unnecessary interference from the complex secondary structure of pseudoknots or kissing loops in typical hairpin DNAs, significantly lowers the background noise, and improves the detection sensitivity. This PEC biosensor is capable of monitoring miRNA-196a in practical settings with additional advantages of efficient electrode fabrication, stability, and reproducibility. This strategy can be extended to various miRNA assays in complex biological systems with excellent performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app