Add like
Add dislike
Add to saved papers

MicroRNA-199-3p up-regulation enhances chondrocyte proliferation and inhibits apoptosis in knee osteoarthritis via DNMT3A repression.

AIM: Studies have pivoted on the position of microRNAs (miRNAs) in knee osteoarthritis (KOA) but not the more specific function of miR-199-3p. Thus, this study is to uncover the mechanism of miR-199-3p in KOA.

METHODS: Rats KOA models were established by modified Hulth method. miR-199-3p expression was observed in cartilage of KOA rats. The binding sites of miR-199-3p were predicted by bioinformatics analysis and the potential interaction between DNA methyltransferase 3A (DNMT3A) and miR-199-3p was verified by dual-luciferase reporter gene assay. Rats were injected with miR-199-3p agomir or antagomir and DNMT3A siRNA into the knee joint. Inflammatory response factors in serum and cartilage tissues, cell apoptosis, and pathological status of cartilage tissues were detected. Chondrocytes were isolated from KOA cartilages and treated with miR-199-3p mimic or inhibitor and DNMT3A siRNA. Chondrocyte proliferation and apoptosis were detected.

RESULTS: miR-199-3p expression was suppressed in cartilage of KOA rats. Dual-luciferase reporter gene assay proved that a miR-199-3p-binding site was located in the 3'UTR of DNMT3A mRNA. Inflammation, chondrocyte apoptosis and cartilage pathological changes were improved by miR-199-3p agomir but aggravated by miR-199-3p antagomir. The effects of miR-199-3p antagomir on KOA rats were partially reversed by DNMT3A siRNA. miR-199-3p mimic or DNMT3A siRNA decreased KOA chondrocytes apoptosis and promoted proliferation. miR-199-3p inhibitor showed the opposite functions to miR-199-3p mimic. The effects of miR-199-3p inhibitor on chondrocytes were reversed by DNMT3A siRNA.

CONCLUSION: This study highlights that miR-199-3p up-regulation or down-regulation of DNMT3A induces chondrocyte proliferation and inhibits apoptosis in KOA, which may widen our eyes to treat patients with KOA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app