Add like
Add dislike
Add to saved papers

Dual inhibition of MEK and AXL targets tumor cell heterogeneity and prevents resistant outgrowth mediated by the epithelial-to-mesenchymal transition in NSCLC.

Cancer Research 2021 January 6
The epithelial-to-mesenchymal transition (EMT) is a dynamic epigenetic reprogramming event that occurs in a subset of tumor cells and is an initiating step towards invasion and distant metastasis. The process is reversible and gives plasticity to cancer cells to survive under variable conditions, with the acquisition of cancer stem cell-like characteristics and features such as drug resistance. Therefore, understanding survival dependencies of cells along the phenotypic spectrum of EMT will provide better strategies to target the spatial and temporal heterogeneity of tumors and prevent their ability to bypass single inhibitor treatment strategies. To address this, we integrated the data from a selective drug screen in epithelial and mesenchymal Kras/p53 (KP) mutant lung tumor cells with separate datasets including reverse phase protein array and an in vivo shRNA dropout screen. These orthogonal approaches identified AXL and MEK as potential mesenchymal and epithelial cell survival dependencies, respectively. To capture the dynamicity of EMT, incorporation of a dual fluorescence EMT sensor system into murine KP lung cancer models enabled real time analysis of the epigenetic state of tumor cells and assessment of the efficacy of single agent or combination treatment with AXL and MEK inhibitors. Both 2-D and 3-D culture systems and in vivo models revealed that this combination treatment strategy of MEK plus AXL inhibition synergistically killed lung cancer cells by specifically targeting each phenotypic subpopulation. In conclusion, these results indicate that co-targeting the specific vulnerabilities of EMT subpopulations can prevent EMT-mediated drug resistance, effectively controlling tumor cell growth and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app