Add like
Add dislike
Add to saved papers

Graph convolution network with similarity awareness and adaptive calibration for disease-induced deterioration prediction.

Medical Image Analysis 2020 December 32
Graph convolution networks (GCN) have been successfully applied in disease prediction tasks as they capture interactions (i.e., edges and edge weights on the graph) between individual elements. The interactions in existing works are constructed by fusing similarity between imaging information and distance between non-imaging information, whereas disregarding the disease status of those individuals in the training set. Besides, the similarity is being evaluated by computing the correlation distance between feature vectors, which limits prediction performance, especially for predicting significant memory concern (SMC) and mild cognitive impairment (MCI). In this paper, we propose three mechanisms to improve GCN, namely similarity-aware adaptive calibrated GCN (SAC-GCN), for predicting SMC and MCI. First, we design a similarity-aware graph using different receptive fields to consider disease status. The labelled subjects on the graph are only connected with those labelled subjects with the same status. Second, we propose an adaptive mechanism to evaluate similarity. Specifically, we construct initial GCN with evaluating similarity by using traditional correlation distance, then pre-train the initial GCN by using training samples and use it to score all subjects. Then, the difference between these scores replaces correlation distance to update similarity. Last, we devise a calibration mechanism to fuse functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) information into edges. The proposed method is tested on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrate that our proposed method is useful to predict disease-induced deterioration and superior to other related algorithms, with a mean classification accuracy of 86.83% in our prediction tasks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app