Add like
Add dislike
Add to saved papers

Uninephrectomy and class II PI3K-C2β inactivation synergistically protect against obesity, insulin resistance and liver steatosis in mice.

Uninephrectomy (UNx) in living kidney donors for transplantation is now routine clinical practice. While chronic kidney disease, due to bilateral kidney dysfunction, is associated with insulin resistance, liver steatosis and type 2 diabetes, the metabolic impact of UNx remains unclear. To better understand the crosstalk between the kidney and insulin target tissues, we studied the metabolic consequences of UNx and the potential involvement of class II PI3K-C2β, the inactivation of which has been reported to result in insulin sensitization. Mice underwent UNx or sham operation followed by either normal chow or high fat diet (HFD). Seventeen weeks post UNx, mice showed improved glucose tolerance, insulin sensitivity and decreased HFD-induced liver steatosis. This was associated with an enhanced serum FGF21 and insulin-stimulated Akt signaling in the liver and muscle of both lean and obese mice. Remarkably, the combination of UNx and PI3K-C2β inactivation protected against HFD-induced obesity and further potentiated the metabolic improvement observed in WT UNx mice correlating with a synergistic increase in metabolic tissues of (1) insulin-stimulated Akt signaling (2) FGFR1 and βKlotho expression. We demonstrated a potential beneficial effect of kidney donation and more effectively with PI3K-C2β inactivation to protect against metabolic disorders through a mutual insulin/FGF21 sensitization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app