Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Mast cell effects on esophageal smooth muscle and their potential role in eosinophilic esophagitis and achalasia.

Mast cells and eosinophils are the key effector cells of allergic disorders. Although most studies on eosinophilic esophagitis (EoE), an allergic disorder of the esophagus, have focused on the role of eosinophils, recent studies suggest a major role for mast cells in causing the clinical manifestations of this disease. Cellular and animal studies have demonstrated that mast cells can cause esophageal muscle cells to proliferate and differentiate into a more contractile phenotype, and that mediators released by degranulating mast cells such as tryptase and histamine can activate smooth muscle contraction pathways. Thus, activated mast cells in the esophageal muscularis propria might cause esophageal motility abnormalities, including the failure of lower esophageal sphincter relaxation typical of achalasia. In addition, mast cells have been implicated in the pathogenesis of a number of neurodegenerative disorders of the central nervous system such as Alzheimer's and Parkinson's diseases, because degranulating mast cells release proinflammatory and cytotoxic mediators capable of damaging neurons. Such mast cell degranulation in the myenteric plexus of the esophagus could cause the loss of enteric neurons that characterizes achalasia. In this report, we review the molecular mechanisms of esophageal smooth muscle contraction, and how mast cells products might affect that muscle and cause neurodegeneration in the esophagus. Based on these data, we present our novel, conceptual model for an allergy-induced form of achalasia mediated by mast cell activation in the esophageal muscularis propria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app