Add like
Add dislike
Add to saved papers

Comparisons of the Nonlinear Relationship of Cerebral Blood Flow Response and Cerebral Vasomotor Reactivity to Carbon Dioxide under Hyperventilation between Postural Orthostatic Tachycardia Syndrome Patients and Healthy Subjects.

Postural orthostatic tachycardia syndrome (POTS) typically occurs in youths, and early accurate POTS diagnosis is challenging. A recent hypothesis suggests that upright cognitive impairment in POTS occurs because reduced cerebral blood flow velocity (CBFV) and cerebrovascular response to carbon dioxide (CO2 ) are nonlinear during transient changes in end-tidal CO2 (PETCO2 ). This novel study aimed to reveal the interaction between cerebral autoregulation and ventilatory control in POTS patients by using tilt table and hyperventilation to alter the CO2 tension between 10 and 30 mmHg. The cerebral blood flow velocity (CBFV), partial pressure of end-tidal carbon dioxide (PETCO2 ), and other cardiopulmonary signals were recorded for POTS patients and two healthy groups including those aged >45 years (Healthy-Elder) and aged <45 years (Healthy-Youth) throughout the experiment. Two nonlinear regression functions, Models I and II, were applied to evaluate their CBFV-PETCO2 relationship and cerebral vasomotor reactivity (CVMR). Among the estimated parameters, the curve-fitting Model I for CBFV and CVMR responses to CO2 for POTS patients demonstrated an observable dissimilarity in CBFVmax ( p = 0.011), mid-PETCO2 ( p = 0.013), and PETCO2 range ( p = 0.023) compared with those of Healthy-Youth and in CBFVmax ( p = 0.015) and CVMRmax compared with those of Healthy-Elder. With curve-fitting Model II for POTS patients, the fit parameters of curvilinear ( p = 0.036) and PETCO2 level ( p = 0.033) displayed significant difference in comparison with Healthy-Youth parameters; range of change ( p = 0.042), PETCO2 level, and CBFVmax also displayed a significant difference in comparison with Healthy-Elder parameters. The results of this study contribute toward developing an early accurate diagnosis of impaired CBFV responses to CO2 for POTS patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app