JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Increased expression of hypoxia-induced factor 1α mRNA and its related genes in myeloid blood cells from critically ill COVID-19 patients.

Annals of Medicine 2021 December
BACKGROUND: COVID-19 counts 46 million people infected and killed more than 1.2 million. Hypoxaemia is one of the main clinical manifestations, especially in severe cases. HIF1α is a master transcription factor involved in the cellular response to oxygen levels. The immunopathogenesis of this severe form of COVID-19 is poorly understood.

METHODS: We performed scRNAseq from leukocytes from five critically ill COVID-19 patients and characterized the expression of hypoxia-inducible factor1α and its transcriptionally regulated genes. Also performed metanalysis from the publicly available RNAseq data from COVID-19 bronchoalveolar cells.

RESULTS: Critically-ill COVID-19 patients show a shift towards an immature myeloid profile in peripheral blood cells, including band neutrophils, immature monocytes, metamyelocytes, monocyte-macrophages, monocytoid precursors, and promyelocytes-myelocytes, together with mature monocytes and segmented neutrophils. May be the result of a physiological response known as emergency myelopoiesis. These cellular subsets and bronchoalveolar cells express HIF1α and their transcriptional targets related to inflammation (CXCL8, CXCR1, CXCR2, and CXCR4); virus sensing, (TLR2 and TLR4); and metabolism (SLC2A3, PFKFB3, PGK1, GAPDH and SOD2).

CONCLUSIONS: The up-regulation and participation of HIF1α in events such as inflammation, immunometabolism, and TLR make it a potential molecular marker for COVID-19 severity and, interestingly, could represent a potential target for molecular therapy. Key messages Critically ill COVID-19 patients show emergency myelopoiesis. HIF1α and its transcriptionally regulated genes are expressed in immature myeloid cells which could serve as molecular targets. HIF1α and its transcriptionally regulated genes is also expressed in lung cells from critically ill COVID-19 patients which may partially explain the hypoxia related events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app