Add like
Add dislike
Add to saved papers

Porcine Model of the Arterial Switch Operation: Implications for Unique Strategies in the Management of Hypoplastic Left Ventricles.

Pediatric Cardiology 2020 November 31
There are no reports on the performance of the arterial switch operation (ASO) in a normal heart with normally related great vessels. The objective of this study was to determine whether the ASO could be performed in a healthy animal model. Cardiopulmonary bypass (CPB) and coronary translocation techniques were used to perform ASO in neonatal piglets or a staged ASO with prior main pulmonary artery (PA) banding. Primary ASO was performed in four neonatal piglets. Coronary translocation was effective with angiograms confirming patency. Piglets could not be weaned from CPB due to right ventricle (RV) dysfunction. To improve RV function for the ASO, nine piglets had PA banding. All survived the procedure. Post-banding RV pressure increased from a mean of 20.3 ± 2.2 mmHg to 36.5 ± 7.3 mmHg (p = 0.007). At 58 ± 1 days post-banding, piglets underwent cardiac MRIs revealing RV hypertrophy, and RV pressure overload with mildly reduced RV function. Catheterization confirmed RV systolic pressures of 84.0 ± 6.7 mmHg with LV systolic pressure 83.3 ± 6.7 mmHg (p = 0.43). The remaining five PA banded piglets underwent ASO at 51 ± 0 days post-banding. Three of five were weaned from bypass with patent coronary arteries and adequate RV function. We were able to successfully perform an arterial switch with documented patent coronary arteries on standard anatomy great vessels in a healthy animal model. To our knowledge this is the first time this procedure has been successfully performed. The model may have implications for studying the failing systemic RV, and may support a novel approach for management of borderline, pulsatile left ventricles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app