Add like
Add dislike
Add to saved papers

JAK/STAT Dysregulation With SOCS1 Overexpression in Acquired Cholesteatoma-Adjacent Mucosa.

IMPORTANCE: Surgery remains the gold standard in cholesteatoma treatment. However, the rate of recurrence is significant and the development of new nonsurgical treatment alternatives is warranted. One of the possible molecular pathways to target is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway.

OBJECTIVE: To investigate the JAK/STAT pathway in the middle ear mucosa in patients with acquired cholesteatoma compared with middle ear mucosa from healthy controls.

DESIGN: Case-control study.

SETTING: Linköping University Hospital, Sweden, and Karolinska Institutet, Stockholm, Sweden. Sampling period: February 2011 to December 2016.

PARTICIPANTS: Middle ear mucosa from 26 patients with acquired cholesteatoma undergoing tympanoplasty and mastoidectomy, and 27 healthy controls undergoing translabyrinthine surgery for vestibular schwannoma or cochlear implantation was investigated.

MAIN OUTCOMES/MEASURES: The expression of Interleukin-7 receptor alpha, JAK1, JAK2, JAK3, STAT5A, STAT5B, and suppressor of cytokine signaling-1 (SOCS1) were quantified using quantitative polymerase chain reaction. In addition, expression level of cyclin D2, transforming growth factor beta 1, thymic stromal lymphopoietin, CD3, and CD19 was evaluated.

RESULTS: In cholesteatoma-adjacent mucosa, SOCS1 was significantly upregulated (p= 0.0003) compared with healthy controls, whereas STAT5B was significantly downregulated (p = 0.0006). The expression of JAK1, JAK2, JAK3, and STAT5A did not differ significantly between groups.

CONCLUSIONS AND RELEVANCE: To the best of our knowledge, this is the first article reporting dysregulation of the JAK/STAT pathway in cholesteatoma-adjacent mucosa. The main finding is that important players of the aforementioned pathway are significantly altered, namely SOCS1 is upregulated and STAT5B is downregulated compared with healthy controls.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app