Add like
Add dislike
Add to saved papers

Enhanced gene transfection of macrophages by photochemical internalization; potential for gene-directed enzyme prodrug therapy of gliomas.

BACKGROUND: Drawn by tumor synthesis of chemo-attractive factors, macrophages are frequently found in and around glioblastomas and play an important role both in augmenting as well as inhibiting tumor growth. Patient-derived macrophages have the potential, therefore, to act as targeted delivery vectors for a variety of anti-cancer treatments. Among these is ex vivo gene transfection and re-injection back into the patient of macrophages to target residual tumors. In this study, photochemical internalization (PCI) is investigated as a technique for the non-viral transfection of the cytosine deaminase (CD) prodrug activating gene into macrophages. The CD gene encodes an enzyme that converts the nontoxic antifungal agent, 5-fluorocytosine (5-FC), into 5-fluorouracil (5-FU) - a potent chemotherapeutic agent.

MATERIALS: PCI (photosensitizer + light treatment) mediated CD gene transfection of rat alveolar Ma cells was carried out in vitro. CD gene transfected NR8383 macrophages were co-cultured with F98 rat glioma cells in the presence or absence of 5-FC. Cell viability was assayed using the MTS colorimetric assay.

RESULTS: Compared to the glioma cells, NR8383 demonstrated enhanced resistance to the toxic effects of 5-FU. PCI greatly increased the transfection efficiency of the CD gene in NR8383 cells. The viability of F98 cells was significantly inhibited by coculture with CD transfected NR8383 macrophages and 5-FC.

CONCLUSION: Although gene insertion into macrophages has proven difficult, the results presented here show that non-viral transfection of the CD gene into these immune cells can be enhanced via PCI. CD transfected NR8383 cells could efficiently convert 5-FC to 5-FU and export the drug, producing a pronounced bystander toxic effect on adjacent non-transfected glioma cells. Compared to single treatment, repetitive PCI-induced transfection was more efficient at low CD plasmid concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app