Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Investigation of associations between Piezo1 mechanoreceptor gain-of-function variants and glaucoma-related phenotypes in humans and mice.

Scientific Reports 2020 November 5
Glaucoma disproportionately affects individuals of African descent. Prior studies of the PIEZO1 mechanoreceptor have suggested a possible role in glaucoma pathophysiology. Here, we investigated associations between a Piezo1 gain-of-function variant common in individuals of African descent with glaucoma-related phenotypes. We analyzed whole genome sequences to identify Piezo1 variants and their frequencies among 1565 human participants. For the most common variant (e756del), we compared phenotypes between heterozygotes, homozygotes, and wildtypes. Longitudinal mixed effects models of visual field mean deviation (MD) and retinal nerve fiber layer (RNFL) thickness were used to evaluate progression. Based on trends in the models, further investigation was conducted using Piezo1 gain-of-function mice. About 30% of African descent individuals had at least one e756del allele. There were trends suggesting e756del was associated with higher IOPs, thinner RNFLs, lower optic nerve head capillary densities, and greater decreases in MD and RNFL thickness over time, but these did not reach statistical significance. Among mice, increased Piezo1 activity was not significantly associated with IOP or retinal ganglion cell density. Our study confirms that the Piezo1 e756del gain-of-function variant is a frequent polymorphism present in African descent individuals but is unrelated to examined differences in glaucoma phenotypes. Ongoing work is needed to elucidate the role of Piezo1-mediated mechanotransduction in glaucoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app