JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

PET imaging of meningioma with 18F-FLT: a predictor of tumour progression.

Brain 2020 December 6
We have previously reported that PET with 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) provides a non-invasive assessment of cell proliferation in vivo in meningiomas. The purpose of this prospective study was to evaluate the potential of 18F-FLT PET in predicting subsequent tumour progression in asymptomatic meningiomas. Forty-three adult patients harbouring 46 MRI-presumed (n = 40) and residual meningiomas from previous surgery (n = 6) underwent a 60-min dynamic 18F-FLT PET scan prior to radiological surveillance. Maximum and mean tumour-to-blood ratios (TBRmax, TBRmean) of tracer radioactivity were calculated. Tumour progression was defined according to the latest published trial end-point criteria for bidimensional (2D) and corresponding yet exploratory volumetric measurements from the Response Assessment of Neuro-Oncology (RANO) workgroup. Independent-sample t-test, Pearson correlation coefficient, Cox regression, and receiver operating characteristic (ROC) curve analyses were used whenever appropriate. The median follow-up time after 18F-FLT PET imaging was 18 months (range 5-33.5 months). A high concordance rate (91%) was found with regard to disease progression using 2D-RANO (n = 11) versus volumetric criteria (n = 10). Using 2D-RANO criteria, 18F-FLT uptake was significantly increased in patients with progressive disease, compared to patients with stable disease (TBRmax, 5.5 ± 1.3 versus 3.6 ± 1.1, P < 0.0001; TBRmean, 3.5 ± 0.8 versus 2.4 ± 0.7, P < 0.0001). ROC analysis yielded optimal thresholds of 4.4 for TBRmax [sensitivity 82%, specificity 77%, accuracy 78%, and area under curve (AUC) 0.871; P < 0.0001] and 2.8 for TBRmean (sensitivity 82%, specificity 77%, accuracy 78%, AUC 0.848; P = 0.001) for early differentiation of patients with progressive disease from patients with stable disease. Upon excluding patients with residual meningioma or patients with stable disease with less than 12 months follow-up, the thresholds remained unchanged with similar diagnostic accuracies. Moreover, positive correlations were found between absolute and relative tumour growth rates and 18F-FLT uptake (r < 0.513, P < 0.015) that remained similar when excluding patients with residual meningioma or patients with stable disease and shorter follow-up period. Diagnostic accuracies were slightly inferior at 76% when assessing disease progression using volumetric criteria, while the thresholds remained unchanged. Multivariate analysis revealed that TBRmax was the only independent predictor of tumour progression (P < 0.046), while age, gender, baseline tumour size, tumour location, peritumoural oedema, and residual meningioma had no influence. The study reveals that 18F-FLT PET is a promising surrogate imaging biomarker for predicting subsequent tumour progression in treatment-naïve and asymptomatic residual meningiomas.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app