Add like
Add dislike
Add to saved papers

Brachyury engineers cardiac repair competent stem cells.

To optimize the regenerative proficiency of stem cells, a cardiopoietic protein-based cocktail consisting of multiple growth factors has been developed and advanced into clinical trials for treatment of ischemic heart failure. Streamlining the inductors of cardiopoiesis would address the resource intensive nature of the current stem cell enhancement protocol. To this end, the microencapsulated-modified-mRNA (M3 RNA) technique was here applied to introduce early cardiogenic genes into human adipose-derived mesenchymal stem cells (AMSCs). A single mesodermal transcription factor, Brachyury, was sufficient to trigger high expression of cardiopoietic markers, Nkx2.5 and Mef2c. Engineered cardiopoietic stem cells (eCP) featured a transcriptome profile distinct from pre-engineered AMSCs. In vitro, eCP demonstrated protective antioxidant capacity with enhanced superoxide dismutase expression and activity; a vasculogenic secretome driving angiogenic tube formation; and macrophage polarizing immunomodulatory properties. In vivo, in a murine model of myocardial infarction, intramyocardial delivery of eCP (600 000 cells per heart) improved cardiac performance and protected against decompensated heart failure. Thus, heart repair competent stem cells, armed with antioxidant, vasculogenic, and immunomodulatory traits, are here engineered through a protein-independent single gene manipulation, expanding the available regenerative toolkit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app