Add like
Add dislike
Add to saved papers

The blockade of interleukin 33 released by hepatectomy would be a promising treatment option for cholangiocarcinoma.

Cancer Science 2020 October 25
Interleukin-33 (IL-33), an alarmin released during tissue injury, facilitates the development of cholangiocarcinoma (CCA) in a murine model. However, it is unclear whether IL-33 is associated with human CCA. The aim of this study was to support the following hypothesis: IL-33 is released during hepatectomy for CCA, subsequently facilitating the development of subclinical CCA and eventually leading to recurrent disease. IL-33 expression was assessed in various samples from both humans and mice including resected liver and paired plasma samples collected at hepatectomy and after surgery, and its influences on recurrent disease and patient prognosis were determined. Homogenized human liver samples with high or low IL-33 expression were added to the culture medium of human CCA cells, and the changes in proliferation and migration were evaluated. To examine the effects of inhibiting the IL-33 release induced by hepatectomy, syngraft transplantation of murine CCA cells was performed in C57BL/6J mice with or without IL-33 blockade. The amount of IL-33 released into the plasma during hepatectomy correlated with the background liver expression. High expression of IL-33 in the liver was an independent risk factor for recurrence. Homogenized liver tissue strongly expressing IL-33 increased both the proliferation and migration of tumor cells. Mice who underwent hepatectomy exhibited CCA progression in the remnant liver, whereas blockade of IL-33 during hepatectomy inhibited tumor progression. Thus, we concluded that surgery for CCA with curative intent paradoxically induced IL-33 release, which facilitated CCA recurrence, and anti-IL-33 therapy during hepatectomy might reduce the risk of CCA recurrence.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app