Add like
Add dislike
Add to saved papers

A Rapid Shift from Chronic Hyperoxia to Normoxia Induces Systemic Anaphylaxis via Transient Receptor Potential Ankyrin 1 Channels on Mast Cells.

Journal of Immunology 2020 October 24
Extensive activation of mast cells is the major switch that triggers systemic anaphylaxis, resulting in the subsequent release of anaphylactic mediators into circulation. We previously demonstrated that rapid changes in oxygen tension lead to mast cell degranulation, and the released tryptase triggers retinal angiogenesis in a murine oxygen-induced retinopathy model. However, whether a rapid shift from hyperoxia to normoxia (relative hypoxic stress) is a risk factor for systemic anaphylaxis remains unknown. In this study, we demonstrated that the relative hypoxia stress induces systemic mast cell activation via transient receptor potential ankyrin 1 (TRPA1) channels, which immediately leads to hypothermia and increased vascular permeability in adult mice. Although mast cell-deficient or TRPA1-deficient mice did not exhibit anaphylactic symptoms following a rapid sift to normoxia, preinjection with bone marrow-derived cultured mast cells (BMCMCs) derived from wild-type TRPA1-expressing mice restored anaphylactic responses. In addition, we found that the rapid reductions in oxygen tension in a culture atmosphere triggered the degranulation of BMCMCs derived from wild-type TRPA1-expressing mice but not that of BMCMCs derived from TRPA1-deficient mice. In human LAD2 mast cells, the relative hypoxic stress led to the degranulation, which was suppressed by the addition of a TRPA1 inhibitor. Gradual reductions from hyperoxia to normoxia led to no anaphylactic symptoms. Our results demonstrated that TRPA1-triggered mast cell degranulation is a novel pathway that induces anaphylactic shock without Ag-Ab reactions. These findings introduce a potential role for oxygen in inducing mast cell-dependent anaphylaxis and highlight the need to reconsider chronic pure oxygen therapy for anoxic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app